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PROPAGATION OF PLANE WAVES OF

A DEFECT FIELD IN A VISCOPLASTIC MEDIUM

IN THE PRESENCE OF AN INTERFACE BETWEEN TWO MEDIA

UDC 539N. V. Chertova and Yu. V. Chernyaev

The dynamic equations of the continual theory of defects are used to study the structure of the waves
of a defect field characterized by a defect density tensor and a defect flux tensor in a viscoplastic
medium. Relations are obtained that define the passage of defect field waves through an interface
between two media. Particular cases of media with rapidly and slowly decaying waves are considered.

Key words: the continual theory of defects, transverse waves, decay, reflection, refraction.

Introduction. Wave processes is an important form of motion of matter. Wave propagation is the fastest
mode of energy transfer that implements a transition from nonequilibrium to equilibrium in a system [1]. In
different material objects, the mechanisms of perturbation propagation are considerably different. Defect field waves
propagate because a variable dislocation density that arises at any point of the body being deformed generates a
defect flow at neighboring points.

Continuing the studies of [2], where the propagation of plane defect waves in a viscoplastic medium is
considered on the basis of defect field theory, we take into account the effect of an interface between two media.
The results obtained in [3–5] suggest a special role of interfaces in deformation processes; therefore, the behavior
of loaded materials in the presence of an interface is an important problem of the mechanics of deformable bodies.
Recently, this problem has been the subject of much research (see, for example, [6, 7]).

The present paper gives the equations of defect field theory for the case of a viscoplastic body. The wave
structure of a defect field characterized by a defect density tensor and a defect flux tensor is analyzed. This analysis
is of great significance for a number of reasons. First, investigation of the structure of defect field waves is a
necessary step in studying the propagation of plane defect waves at an interface of two media. Second, the analysis
performed supplements experimental measurements of plastic distortion rates [8] by corresponding components of
the dislocation density tensor, which characterizes the defect structure of material. That is, these results allow the
dislocation density related to couple stresses to be evaluated from plastic strain rates measured in experiments [9].

This paper studies the propagation of plane defect waves in the presence of an interface between two media.
The relations obtained (refraction law and reflection and refraction coefficients) are used to analyze waves propa-
gating in media with rapid and slow decay; the general case of wave propagation in media with arbitrary decay is
also considered.

1. Formulation of the Problem. The basic dynamic equations of defect field theory [1, 10] are written
as

B(∇ · I) = −P , ∇ · α = 0,

∂α

∂t
= ∇× I, S(∇× α) = −B

∂I

∂t
− σ,

(1)

where α and I are the density and dislocation flux tensors, P and σ are the effective stresses and momentum, B and
S are constants of the theory, and the dot and multiplication signs denote scalar and vector products, respectively.
Equations (1) imply that the effective stresses and momentum satisfy the compatibility equation
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∂P

∂t
= ∇ · σ, (2)

which is the equation of dynamic equilibrium in continuum mechanics. According to the definition of a viscoplastic
body [11], which implies the dependence of stresses on the plastic strain rate, we assume

σ = ηI. (3)

Here η is the viscosity tensor and I is the defect flux tensor determined by the plastic distortion rate β [12]:

I = −∂β

∂t
.

In this case, α = −∇ × β. As noted above [2], relation (3) can be written formally on the basis of the analogy
between Eqs. (1) and the Maxwell electrodynamics equations [13]. In the general case [14], the effective stresses
have the form

σ = σext + σint + σvis.

In the model, expression (3) implies that σext � σvis and σint � σvis (σext are the stresses due to the external load,
σint are the internal stresses determined by material defects, and σvis are viscous stresses).

Considering Eqs. (1)–(3) together, one can show that in a viscoplastic medium, the effective momentum
decreases with time as

P = P0 exp (−t/τ), (4)

where τ = B/η is the relaxation time and P0 is the initial momentum. The decrease in the momentum is the
faster, the smaller the relaxation time determined by the parameters B and η, which characterize the inertia of
the ensemble of defects and the viscosity of the medium. According to (4), a defect field in a viscoplastic medium
cannot be responsible for the occurrence of momentum because if P (0) = 0, then, in the following, P (t) = 0. With
allowance for equalities (3) and (4), the original system (1) is written as

∇ · I = 0, ∇ · α = 0,

∂α

∂t
= ∇× I, S(∇× α) = −B

∂I

∂t
− ηI.

(5)

For completeness of system (5), which allows defect field characteristics to be uniquely determined from
specified initial values, one needs to specify boundary conditions for α and I on the interface. These boundary
conditions can be obtained by a known method [15] using the integrated form of Eqs. (5). We assume that the
normal components αnk and Ink and the tangential components αtk and Itk of the defect field characteristics on
the interface satisfy the conditions

I1
nk − I2

nk = 0, α1
nk − α2

nk = 0,

I1
tk − I2

tk = 0, S1α
1
tk − S2α

2
tk = 0.

(6)

2. Structure of Defect Field Waves. We consider a defect field in which the quantities α and I depend
on one dimensional coordinate ξ = m · r and time t. In this case, each of nine components αik satisfies one scalar
equation

B

S

∂2αij

∂t2
− ∂2αij

∂ξ2
+

η

S

∂αij

∂t
= 0. (7)

A similar equation is written for the components Iik. As shown in [2], Eqs. (7) describe the propagation of two
plane harmonic waves

α1,2 = α exp (iω(t± ξ/V )), I1,2 = I exp (iω(t± ξ/V )) (8)

at a velocity

V =
√

(S/B)/(1 + iη/(Bω)).

To determine the structure of the defect field waves, we consider a wave propagating in the direction m. In this
case, Eqs. (5) become
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∂

∂ξ
(mI) = 0,

∂

∂ξ
(mα) = 0,

∂

∂ξ
[mI] =

∂α

∂t
, S

∂

∂ξ
[mα] = −B

∂I

∂t
− ηI.

(9)

From the first two equations it follows that ∂ξIξi = 0 and ∂ξαξi = 0; i.e, if the projections of the tensors α and I

onto the direction of wave propagation are not equal to zero, they can depend only on time. Multiplying the last
two equations scalarly by the vector m, we obtain

∂αξi

∂t
= 0, B

∂Iξi

∂t
+ ηIξi = 0. (10)

The first of these equations implies that the projection of the defect density wave onto the direction ξ also does not
depend on time; i.e., αξi ≡ 0. In other words, the defect density wave is transverse and all nonzero components lie
in the plane of the wave. From the second equation of system (10), it follows that the longitudinal components of
the defect flux tensor decrease with time as

Iξi = Iξi(0) exp (−t/τ);

therefore, the wave of the tensor I is also transverse in a viscoplastic medium.
Let us determine the relationship between the defect field characteristics in a plane harmonic wave. Substi-

tuting (8) into the third equation of system (9), we obtain

α = [mI]/V. (11)

The parameter

1/V =
√

B/(S(1 + iη)/(Bω)) =
√

1 + i tan δ/C = (n + iχ)/C, (12)

which defines the quantitative relationship between α and I, has the meaning of the impedance of the medium.
Here tan δ = η/(Bω) is the loss factor, n and χ are the refraction and absorption factors, and C =

√
S/B.

Using (11), we obtain the ratio of the absolute values of the defect field characteristics and the phase shift ϕ:

|I|/|α| = |V | = C/
√

n2 + χ2, tanϕ = χ/n = tan (δ/2), ϕ = δ/2.

Here n =
√

(
√

tan2 δ + 1 + 1)/2 and χ =
√

(
√

tan2 δ + 1− 1)/2 [2].
Let us consider the limiting cases where slowly and rapidly decaying waves propagate in the medium. For

slowly decaying waves, tan δ � 1; therefore, n = 1, χ = (tan δ)/2, and

|I|/|α| = |V | = C/
√

1 + (tan2 δ)/4 ≈ C, tanϕ = (tan δ)/2.

For rapidly decaying waves, tan δ � 1, n ≈ χ =
√

(tan δ)/2, and

|I|/|α| = |V | ≈ C/
√

tan δ, tanϕ ≈ 1.

However, in the case tan δ � 1, the wave process practically does not occur because the defect wave decays at very
small distances from the boundary. The amplitude decreases by a factor of e at a distance

d = C/(χω) = λ/(2πχ), (13)

which, at tan δ � 1 and n ≈ χ � 1, is much smaller than the wavelength λ.
3. Passage of a Plane Defect Wave through an Interface of Two Media. 3.1. Reflection and

Refraction Laws. We assume that the interface of two homogeneous media coincides with the plane z = 0 in a
Cartesian coordinate system. The media located above (z > 0) and below (z < 0) the interface are characterized
by the parameters B1, S1, and η1 and B2, S2, and η2, respectively. A plane wave from medium 1 is incident on
the interface at an angle θ0 to the z axis with a frequency ω and a wave vector K0 = k1m0, where k1 = ω/V1 and
m0 is the unit normal vector to the incident wave front (Fig. 1). The incidence plane containing the vector K0 and
the z axis is made coincident with the plane xz. The wave vector of the reflected wave is denoted by K1 = k1m1,
and the wave vector of the refracted wave by K2 = k2m2; z0 is the unit normal vector to the boundary directed
from medium 2 to medium 1.

According to (8) and (11), the defect fields can be written as follows:
for the incident wave,
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Fig. 1. Reflection and refraction of a plane wave at an interface of two media.

I = I0 exp (−iωt + ik1m0r), α = [m0I0]Z1 exp (−iωt + ik1m0r); (14)

for the reflected wave,

IR = I1 exp (−iωt + ik1m1r), αR = [m1I1]Z1 exp (−iωt + ik1m1r);

and for the refracted wave,

IT = I2 exp (−iωt + ik2m2r), αT = [m2I2]Z2 exp (−iωt + ik2m2r). (15)

Here Z1 = 1/V1 and Z2 = 1/V2 are the impedances of medium 1 and 2, respectively.
At z = 0, boundary conditions (6) for the tangential component of the total wave field α and I should be

satisfied:

[z0I0] eiK0r +[z0I1] eiK1r = [z0I2] eiK2r,

[z0[m0I0]] eiK0r +[z0[m1I1]] eiK1r = (S2Z2/S1Z1)[z0[m2I2]] eiK2r .
(16)

Relations (16), which are valid at all points of the plane z = 0, imply identical dependences of the three wave fields
on the coordinates x and y at z = 0; i.e., the phase factors should satisfy the conditions

k1m0r
∣∣∣
z=0

= k1m1r
∣∣∣
z=0

= k2m2r
∣∣∣
z=0

or

k1 sin θ0 = k1 sin θ1 = k2 sin θ2, (17)

where θ1 is the reflection angle and θ2 is the refraction angle (Fig. 1). From (17) it follows that the reflection angle
is equal to the incidence angle (reflection law):

θ0 = θ1,

and the sines of the refraction and incidence angles are linked by the relation

sin θ2/ sin θ0 = k1/k2, (18)

which is an analog of the refraction law or Snell’s law in electrodynamics [1].
3.2. Reflection and Refraction Coefficients. To determine the amplitudes of the reflected and refracted

waves, we revert to system (16). We consider waves of two different linear polarizations: a horizontally polarized
wave with tensor I, whose nonzero components are perpendicular to the incidence plane (Ixi = Izi = 0 and Iyi 6= 0),
and a vertically polarized wave with tensor I, whose components belong to the incidence plane (Iyi = 0, Ixi 6= 0,
and Izi 6= 0). In the first case (for horizontally polarized waves) from Eqs. (16) for unknown amplitudes I1 and I2,
we obtain
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I0 + I1 = I2, S1Z1(I0 − I1) cos θ0 = S2Z2I2 cos θ2. (19)

Solving (19), we find the coefficients linking the amplitudes of the reflected and refracted waves to the amplitude
of the incident wave:

Rg =
S1Z1 cos θ0 − S2Z2 cos θ2

S1Z1 cos θ0 + S2Z2 cos θ2
, Tg =

2S1Z1 cos θ0

S1Z1 cos θ0 + S2Z2 cos θ2
. (20)

Here Rg = I1/I0 and Tg = I2/I0. For vertically polarized waves, system (16) becomes

(I0 − I1) cos θ0 = I2 cos θ2, S1Z1(I0 + I1) = S2Z2I2.

The coefficients linking the amplitudes of the three waves, known in electrodynamics as Fresnel coefficients, are
written as

Rv =
S2Z2 cos θ0 − S1Z1 cos θ2

S2Z2 cos θ0 + S1Z1 cos θ2
, Tv =

2S1Z1 cos θ0

S2Z2 cos θ0 + S1Z1 cos θ2
. (21)

Using (18), we write expressions (20) and (21) as follows:

Rg =
(S1V2/S2V1) cos θ0 −

√
1− (V2/V1)2 sin2 θ0

(S1V2/S2V1) cos θ0 +
√

1− (V2/V1)2 sin2 θ0

,

Tg =
(2S1V2/S2V1) cos θ0

(S1V2/S2V1) cos θ0 +
√

1− (V2/V1)2 sin2 θ0

;
(22)

Rv =
(S2V1/S1V2) cos θ0 −

√
1− (V2/V1)2 sin2 θ0

(S2V1/S1V2) cos θ0 +
√

1− (V2/V1)2 sin2 θ0

,

Tv =
2 cos θ0

(S2V1/S1V2) cos θ0 +
√

1− (V2/V1)2 sin2 θ0

.

(23)

For normal incidence(θ0 = 0),

Rg =
S1Z1 − S2Z2

S1Z1 + S2Z2
= −Rv.

4. Analysis of Particular Cases. 4.1. Slowly Decaying Waves. Let us analyze the general expressions
(20) and (21) for the particular cases of limiting media in which rapidly and slowly decaying waves propagate. The
following preliminary remarks should be made. The interface of two media is actually a thin transitional layer
rather than a geometrical surface. Formulas (17) are valid irrespective of any assumptions on the nature of this
layer. The derivation of formulas (22) and (23) using the conditions on the interface assumes that the thickness of
the transitional layer δ is small compared to the wavelength λ. Usually, in a macroscopic description, λ � δ.

We consider media in which waves decay slowly (tan δ1 � 1 and tan δ2 � 1) and, hence, the ratio

V2

V1
=

C2

C1

√
1 + i tan δ1

1 + i tan δ2
' C2

C1
=

√
S2B1

S1B2
(24)

is real. For V2/V1 < 1, the reflection and refraction coefficients (22) and (23) are also real; i.e., the phase shift
between the incident and reflected waves is 0 or π.

Figure 2 gives curves of Rg(θ) and Rv(θ) for different ratios of the model parameters. The curve of Rg(θ)
has no singularities and vanishes only in the case of V2/V1 = 1 and S1/S2 = 1, where the properties of both media
are identical; i.e, the reflection disappears when the interface disappears. The reflection coefficient Rv(θ) defined as

Rv =
S2 sin θ0 cos θ0 − S1 sin θ2 cos θ2

S2 sin θ0 cos θ0 + S1 sin θ2 cos θ2
=

tan (θ0 − ϕ)
tan (θ0 + ϕ)

,

has two singularities: singularity for V2/V1 = 1 and S1/S2 = 1 and singularity for

θ0 + ϕ = π/2. (25)
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Fig. 2. Reflection coefficients of the defect flux tensor components perpendicular (a) and parallel (b) to
the incidence plane versus the incidence angle for V2/V1 = 0.6: S1/S2 = 1.43 (1), 1 (2), and 0.43 (3).

Here ϕ = (1/2) arcsin ((S1/S2) sin 2θ2). A simultaneous consideration of relations (18) and (25) yields the incidence
angle at which the second singularity takes place:

θ∗0 = arcsin

√
(V2/V1)2 − (S2/S1)2

(V2/V1)4 − (S2/S1)2
.

The angle θ∗0 is the angle of complete polarization (Brewster angle in electrodynamics) because an arbitrarily oriented
wave incident at this angle is reflected to become a horizontally polarized wave [Rv(θ) = 0]. As the incidence angle
varies from 0 to θ∗0 , the absolute value of Rv(θ) decreases from the value determined according to (23) to zero; at
θ∗0 < θ0 < π/2, the absolute value of Rv(θ) increases from 0 to 1. The phase Rv(θ), equal to zero at 0 < θ0 < θ∗0 ,
changes suddenly at θ0 = θ∗0 and becomes equal to π at θ∗0 < θ0 < π/2.

If reflection occurs at an interface of media that satisfy the conditions V2/V1 > 1 and θ0 < θ2, then, for

sin θ0 > V1/V2, cos θ2 =
√

1− (V2/V1)2 sin2 θ0 is an imaginary value. This case corresponds to complete internal
reflection from the interface of two viscous media. The angle θ0 corresponding to the condition

sin θ0 = V1/V2 (26)

is called the angle of complete internal reflection. In this case, sin θ2 = 1 and the refracted wave propagates parallel
to the interface. Let us determine the structure of the refracted wave for incidence angles larger or equal to the
limiting angle (26). In this case,

cos θ2 = ±i

√
(V2/V1)2 sin2 θ0 − 1 (27)

and, according to (15), the refracted wave has the form

IT = I2 exp
(
− i(ωt− k1 sin θ0x)− |z|k2

√
(V2/V1)2 sin2 θ0 − 1

)
.

This expression describes an inhomogeneous plane wave whose phase varies along the x axis and whose amplitude
decreases in the z direction. Thus, in the case of complete internal reflection, an exponentially decreasing field
exists in the second medium.

Figure 3 shows curves of the reflection coefficients Rg(θ) and Rv(θ) for V2/V1 > 1. According to (22) and
(23), in the case of complete internal reflection, we have |Rg| = 1 and |Rv| = 1; i.e., for each components of
the horizontal polarization [Rg = |Rg| exp (iδg)] or vertical polarization [Rv = |Rv| exp (iδv)], the intensity of the
reflected defect wave is equal to the intensity of the incident wave. It is easy to calculate the variation of the reflected
and incident wave phases δg and δv taking into account that expressions (22) and (23) subject to condition (27) are
written as the ratio of two complex conjugate quantities:

tan
δg

2
= −

√
(V2/V1)2 sin2 θ0 − 1

(S1V2/S2V1) cos θ0
, tan

δv

2
= −

√
(V2/V1)2 sin2 θ0 − 1

(S2V1/S1V2) cos θ0
.
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Fig. 3. Curve of Rg(θ) (a) and Rv(θ) (b) for V2/V1 = 1.033: S1/S2 = 1.43 (1), 1 (2), and 0.43 (3).

4.2. Rapidly Decaying Waves. As noted above, provided that tan δ1 � 1 and tan δ2 � 1, rapidly decaying
waves propagate in the medium. The quantity

V2

V1
=

C2

C1

√
1 + i tan δ1

1 + i tan δ2
≈ C2

C1

√
tan δ1

tan δ2
+

i

tan δ2

( tan δ1

tan δ2
− 1

)
is real only provided that one of the following conditions holds: tan δ1/ tan δ2 ≈ 1 or tan δ1/ tan δ2 � 1. In these
cases,

V2

V1
≈ C2

C1

√
tan δ1

tan δ2
=

√
S2η1

S1η2

all derivations of Sec. 4.1 are formally valid. However, rapidly decaying wave travel very small distances d (13)
comparable with the surface layer thickness δ because d � λ and δ � λ; therefore, a macroscopic description is
incorrect in this case.

5. General Case. For arbitrary values of tan δ1 and tan δ2, expression (24) is complex. In this case, the
quantity θ2 is also complex and does not have the meaning of an ordinary refraction angle (18). The coordinate-
dependent part of the incident (14) and reflected (12) wave phase has the form

ik1m0r = i(ω/C1)(n1 + iχ1)(x sin θ0 + z cos θ0). (28)

For the refracted wave, we can similarly write

ik2m2r = i(ω/C2)(n2 + iχ2)(x sin θ2 + z cos θ2)

or, using (18),

ik2m2r = ik1x sin θ0 + ik2z

√
1− (k1/k2)2 sin2 θ0. (29)

Taking into account that

cos θ0 =
√

1−
(k1

k2

)2

sin2 θ0 =

√
1−

(C2

C1

)2(n1 + iχ1

n2 + iχ2

)2

sin2 θ0

and introducing the new representation cos θ0 = q eiγ (q and γ are real numbers), we write expression (29) in the
form

ik2m2r = i(ω/C2)[(C2/C1)n1x sin θ0 + zq(n2 cos γ − χ2 sin γ)]

− (ω/C2)[(C2/C1)χ1x sin θ0 + zq(χ2 cos γ + n2 sin γ)],

where

q2 cos 2γ = 1− (C2/C1)2((n1n2 + χ1χ2)2 − (χ1n2 − n1χ2)2)/(n2
2 + χ2

2)
2,

102



q2 sin 2γ = 2(C2/C1)2((n1n2 + χ1χ2)(χ1n2 − n1χ2))/(n2
2 + χ2

2)
2.

Thus, in media with arbitrary wave decay, the incident and reflected waves (28) are homogeneous because the
constant amplitude surfaces and the constant phase surface defined by the equation x sin θ0 + z cos θ0 = const
coincide. The amplitude of these waves decreases by a factor of e at a distance

d1 = C1/(χ1ω) = λ1/(2πχ1) (30)

in the direction of wave propagation. The refracted wave (29) is generally inhomogeneous because the constant
amplitude surfaces

(C2/C1)χ1x sin θ0 + zq(χ2 cos γ + n2 sin γ) = const (31)

and the constant phase surfaces

(C2/C1)n1x sin θ0 + zq(n2 cos γ − χ2 sin γ) = const

are different. Both sets of surfaces are planes, normals to which make angles θa and θph with the normal to the
boundary z0, and

cos θa = q(χ2 cos γ + n2 sin γ)/Ra, sin θa = (C2/C1)χ1 sin θ0/Ra,

cos θph = q(n2 cos γ − χ2 sin γ)/Rph, sin θph = (C2/C1)n1 sin θ0/Rph,

where

Ra =
√

((C2/C1)χ1 sin θ0)2 + q2(χ2 cos γ + n2 sin γ)2,

Rph =
√

((C2/C1)n1 sin θ0)2 + q2(n2 cos γ − χ2 sin γ)2.

Conclusions. The main results of the study are as follows. The analysis performed of the structure of the
defect field waves revealed the transverse nature of the defect density and defect flux waves in viscoplastic media.
The transverse nature of the defect density tensor waves was established on the basis of the kinematic identities of
an elastic continuum with defects and does not depend on the material relation (3), which defines the properties
of the medium. As regards the defect flux tensor waves, their nature is intimately related to the properties of the
medium and the above conclusion is valid only for viscoplastic media.

In addition, the analysis of the wave structure revealed the relationship between the defect density tensor
and the defect flux tensor in a plane harmonic wave. The special cases of viscoplastic media with rapid and slow
wave decay were considered. The obtained conditions of rapid [η/(Bω) � 1] or slow [η/(Bω) � 1] wave decay allow
one to choose conditions of surface or volumetric dynamic loading of a sample by varying the loading frequency for
specified material constants.

In media with rapid wave decay, the thickness of the plastically deformed surface layer is determined by the
penetration depth of defect field waves. An analytical expression is obtained that links the penetration depth of a
defect field to the material characteristics and external loading parameters (13).

The reflection and refraction laws and the reflection and refraction coefficients linking the amplitudes of
reflected and refracted waves to the incident wave amplitude were obtained in studying the propagation of plane
defect field waves through an interface of two viscoplastic media.

Complete internal reflection and a phenomenon similar to the effect of electromagnetic wave incidence at the
Brewster angle were found in analyzing the propagation of slowly decaying waves. In the case of complete internal
reflection, the defect field in the refracted wave propagating along the interface of two media decays exponentially.

In media with arbitrary wave decay, the incident and reflected wave are homogeneous. The amplitudes of
these waves decrease exponentially at a distance d1 (30) in the direction of wave propagation. Probably, by varying
loading conditions and the properties and geometry of the first medium, it is possible to produce conditions under
which the incident wave decays without reaching the interface of two media. If the perturbation reaches the interface
of two media, a refracted wave (29) arises, which is not homogeneous and decreases exponentially along the normal
to the constant amplitude plane (31).

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 02-01-01188).
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